Sunday, April 15, 2018

Andreas Wagner: Genetic Regulation Drives Evolutionary Change

A Hall of Mirrors

A new paper from Andreas Wagner and co-workers argues that a key and crucial driver of evolution is changes to the interaction between transcription factor proteins and the short DNA sequences to which they bind. In other words, evolution is driven by varying the regulation of protein expression (and a particular type of regulation—the transcription factor-DNA binding) rather than varying the structural proteins themselves. Nowhere does the paper address or even mention the scientific problems with this speculative idea. For example, if evolution primarily proceeds by random changes to transcription factor-DNA binding, creating all manner of biological designs and species, then from where did those transcription factors and DNA sequences come? The answer—that they evolved for some different, independent, function; itself an evolutionary impossibility—necessitates astronomical levels of serendipity. Evolution could not have had foreknowledge. It could not have known that the emerging transcription factors and DNA sequence would, just luckily, be only a mutation away from some new function. This serendipity problem has been escalating for years as evolutionary theory has repeatedly failed, and evolutionists have applied ever more complex hypotheses to try to explain the empirical evidence. Evolutionists have had to impute to evolution increasingly sophisticated, complex, higher-order, mechanisms. And with each one the theory has become ever more serendipitous. So it is not too surprising that evolutionists steer clear of the serendipity problem. Instead, they cite previous literature as a way of legitimizing evolutionary theory. Here I will show examples of how this works in the new Wagner paper.

The paper starts right off with the bold claim that “Changes in the regulation of gene expression need not be deleterious. They can also be adaptive and drive evolutionary change.” That is quite a statement. To support it the paper cites a classic 1975 paper by Mary-Claire King and A. C. Wilson entitled “Evolution at two levels in humans and chimpanzees.” The 1975 paper admits that the popular idea and expectation that evolution occurs by mutations in protein-coding genes had largely failed. The problem was that, at the genetic level, the two species were too similar:

The intriguing result, documented in this article, is that all the biochemical methods agree in showing that the genetic distance between humans and the chimpanzee is probably too small to account for their substantial organismal differences.

Their solution was to resort to a monumental shift in evolutionary theory: evolution would occur via the tweaking of gene regulation.

We suggest that evolutionary changes in anatomy and way of life are more often based on changes in the mechanisms controlling the expression of genes than on sequence changes in proteins. We therefore propose that regulatory mutations account for the major biological differences between humans and chimpanzees.

In other words, evolution would have to occur not by changing proteins, but by changing protein regulation. What was left unsaid was that highly complex, genetic regulation mechanisms would now have to be in place, a priori, in order for evolution to proceed.

Where did those come from?

Evolution would have to create highly complex, genetic regulation mechanisms so that evolution could occur.

Not only would this ushering in of serendipity to evolutionary theory go unnoticed, it would, incredibly, be cited thereafter as a sort of evidence, in its own right, showing that evolution occurs by changes to protein regulation.

But of course the 1975 King-Wilson paper showed no such thing. The paper presupposed the truth of evolution, and from there reasoned that evolution must have primarily occurred via changes to protein regulation. Not because anyone could see how that could occur, but because the old thinking—changes to proteins themselves—wasn’t working.

This was not, and is not, evidence that changes in the regulation of gene expression can be “adaptive and drive evolutionary change,” as the Wagner paper claimed.

But this is how the genre works. The evolution literature makes unfounded claims that contradict the science, and justifies those claims with references to other evolution papers which do the same thing. It is a web of deceit.

Ultimately it all traces back to the belief that evolution is true.

The Wagner paper next cites a 2007 paper that begins its very first sentence with this unfounded claim:

It has long been understood that morphological evolution occurs through alterations of embryonic development.

I didn’t know that. And again, references are provided. This time to a Stephen Jay Gould book and a textbook, neither of which demonstrate that “morphological evolution occurs through alterations of embryonic development.”

These sorts of high claims by evolutionists are ubiquitous in the literature, but they never turn out to be true. Citations are given, and those in turn provide yet more citations. And so on, in a seemingly infinite hall of mirrors, where monumental assertions are casually made and immediately followed by citations that simply do the same thing.

Religion drives science, and it matters.

1 comment:

  1. I feel that one elements that the biological community is missing is that of an engineering perspective. I really don't think that biologists know how to build things. And I do not mean this disrespectfully. When Darwin came up with his theory he thought a cell was just a blob of goo. But what we have found is almost an entire universe of machines and information. Take the kinesin. A small robotic motor protein that is not only responsible for building a cell but also other cell functions. And cells have lots of these kind of robotic motor proteins. We have discovered that the mechanics of life is very robotic and information in nature.

    An engineer knows that there is a minimum level of complexity to make things work. This is a given. Yet, when scientists approach life they do not apply this knowledge of how to build complex things to understanding life. If this was done we would not entertain such things as random mutations acted upon by natural selection. This is NOT how you build complex things.

    Yet, the fact that life is the most sophisticated robotics we know combined with the most sophisticated software imaginable demands that we take a step back and reexamine our ideas of life.