From electron microscopes to earth-orbiting observatories, scientists use a variety of instruments to study nature by measuring, observing and yes, rendering. Measurements are graphed and fitted with mathematical models. Renderings, on the other hand, are not so easily quantified. This can make them less useful for the business of building quantitative models and making predictions. But renderings can, in an instant, convey a powerful message. A picture, as they say, is worth a thousand words.
Consider, for instance, ribonuclease A, an enzyme that voraciously chops up RNA molecules. In the mid twentieth century scientists figured out how to determine the structure of such proteins using X-rays, and then later using other techniques as well. A protein sample is carefully crystallized and then exposed to an X-ray beam. The X-rays diffract as they pass through the sample and create a complex pattern which indicates the positions of the various atoms in the protein. Here is what the 124 amino acid ribonuclease A protein structure looks like when its many atoms are rendered in a three-dimensional graph:
As you can see, a graph of a protein’s individual atoms doesn’t tell you very much. It looks like, well, a bunch of atoms. But if we step back and consider the protein’s amino acids we see something very different. In a protein, the amino acids are sometimes wound tightly in a helix. Or they can be stretched out into a strand. These two patterns can be detected from the atomic locations and graphed. Here is the ribonuclease A structure again, but this time with these amino acid patterns rendered and their individual atoms left off the graph:
Suddenly a coherent structure is apparent.
Because ribonuclease A is such a voracious eater it sometimes needs to be turned off. Enter the ribonuclease inhibitor. Here are some different renderings of this beautiful horse-shoe shaped protein:
The ribonuclease inhibitor is shaped to dock with ribonuclease A and bring it to a halt. Here are renderings of the two proteins docked together:
Such renderings provide an immediate peek at the phenomena at work. They provide higher level information than do mere measurements. And it is interesting that these renderings were made with graphing tools that know nothing of ribonuclease A or ribonuclease inhibitors, in particular. Computer scientists have developed these powerful rendering tools based on general principles of protein structure. But these tools do nothing without the structural data provided by measurement techniques, such as X-ray diffraction.
So as with electron microscopes and astronomical observatories, these molecular tools create impressive, beautiful and meaningful renderings that are completely dependent on the measurements. The computer scientist creates the tool, but has no idea what rendering might emerge after the raw data are input.
A recent example of the power of rendering, and the importance of stepping back and choosing the right perspective, is the frog embryo’s electric face. If that sounds strange read on, for as one researcher said, “electric face” is the perfect description.
The body electric
Electricity is not just for engineers, it is crucial in biology as well. For instance, a cell contains various ionic compounds which give the cell interior a net charge. And the difference between the intracellular charge and that of the the external environment causes a voltage across the cell membrane. This membrane voltage is crucial in cellular biology. For instance, a wide variety of membrane proteins, such as channels that allow chemical in and out of the cell, are controlled by the membrane voltage. Change the voltage and you suddenly change the state of those proteins and their various actions.
Yes electricity is important in biology, but when Dany Adams left her digital camera and microscope apparatus running overnight, she had no idea what stunning electrical patterns would emerge on the frog embryo she was studying. Watch this video to learn more:
Here is a shorter video of just the embryo:
The video suggests that bioelectric signals presage the morphological development of the face. It also, in an instant, gives a peak at the phenomenal processes at work in biology. As the lead researcher said, “It’s a jaw dropper.”
The frog’s electric face is one of those renderings worth a thousand words. We could make detailed protein measurements showing that evolution cannot even explain how a single protein could have arisen. In fact there are 27 orders of magnitude between evolution’s expectations and reality. And that is going by the evolutionist’s own reckoning (in reality it is 100+ orders of magnitude). Or we could make detailed measurements of mutations and show that unicellular organisms are not likely to evolve spontaneously into elephants.
But the frog’s electric face, in an instant, reminds one of the utter absurdity of evolution. Religion drives science, and it matters.
* Hat tip to bornagain77
It seems to me, due to the constant focus on molecules, and classical 'molecular information', by most molecular biologists, that there is another whole level of 'biophotonic' information processing going in the cell that seems to get severely overlooked in these considerations of what is going on inside of cells:
ReplyDeletenotes:
Cellular Communication through Light
Excerpt: Information transfer is a life principle. On a cellular level we generally assume that molecules are carriers of information, yet there is evidence for non-molecular information transfer due to endogenous coherent light. This light is ultra-weak, is emitted by many organisms, including humans and is conventionally described as biophoton emission.
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0005086
The Real Bioinformatics Revolution - Proteins and Nucleic Acids 'Singing' to One Another?
Excerpt: the molecules send out specific frequencies of electromagnetic waves which not only enable them to ‘see' and ‘hear' each other, as both photon and phonon modes exist for electromagnetic waves, but also to influence each other at a distance and become ineluctably drawn to each other if vibrating out of phase (in a complementary way).,,, More than 1 000 proteins from over 30 functional groups have been analysed. Remarkably, the results showed that proteins with the same biological function share a single frequency peak while there is no significant peak in common for proteins with different functions; furthermore the characteristic peak frequency differs for different biological functions. ,,, The same results were obtained when regulatory DNA sequences were analysed.
http://www.i-sis.org.uk/TheRealBioinformaticsRevolution.php
Are humans really beings of light?
Excerpt: "We now know, today, that man is essentially a being of light.",,, "There are about 100,000 chemical reactions happening in every cell each second. The chemical reaction can only happen if the molecule which is reacting is excited by a photon... Once the photon has excited a reaction it returns to the field and is available for more reactions... We are swimming in an ocean of light."
http://viewzone2.com/dna.html
Photon Emission Image - This first image shows one of the test subjects in full light. The middle image shows the body giving off weak emissions of visible light in totally dark conditions. The rightmost image of the subject, captured in infrared wavelengths, shows the heat emissions.
Deletehttp://msnbcmedia1.msn.com/j/MSNBC/Components/Photo/_new/090722-body-glow-1p.grid-6x2.jpg
Humans Glow in (Emit) Visible Light - July 2009
Excerpt: Past research has shown that the body emits visible light, 1,000 times less intense than the levels to which our naked eyes are sensitive. In fact, virtually all living creatures emit very weak light,
http://www.msnbc.msn.com/id/32090918/ns/technology_and_science-science/t/humans-glow-visible-light/
Coast to Coast - Vicki's Near Death Experience (Blind From Birth) part 1 of 3
http://www.youtube.com/watch?v=e65KhcCS5-Y
Quote from preceding video: 'I was in a body and the only way that I can describe it was a body of energy, or of light. And this body had a form. It had a head. It had arms and it had legs. And it was like it was made out of light. And 'it' was everything that was me. All of my memories, my consciousness, everything.' -
Vicky Noratuk
" Luminous beings are we, not this crude matter."
Delete-- Master Yoda, Jedi Knight
Revealed you are as a Jedi.
Wow! "Sheds" new light on these words: "The lamp of the body is the eye. If therefore your eye is good, your whole body will be full of light. But if your eye is bad, your whole body will be full of darkness. IF THEREFORE THE LIGHT THAT IS IN YOU IS DARKNESS, HOW GREAT IS THAT DARKNESS."
ReplyDelete